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This paper presents combined theoretical and experimental studies of the two-
dimensional piston-like steady-state motions of a fluid in a moonpool formed by two
rectangular hulls (e.g. a dual pontoon or catamaran). Vertical harmonic excitation of
the partly submerged structure in calm water is assumed. A high-precision analytically
oriented linear-potential-flow method, which captures the singular behaviour of the
velocity potential at the corner points of the rectangular structure, is developed.
The linear steady-state results are compared with new experimental data and show
generally satisfactory agreement. The influence of vortex shedding has been evaluated
by using the local discrete-vortex method of Graham (1980). It was shown to be
small. Thus, the discrepancy between the theory and experiment may be related to
the free-surface nonlinearity.

1. Introduction
‘Moonpools’ are vertical openings, through the deck and hull of ships or barges,

used for marine and offshore operations such as pipe laying or diver recovery.
The riser systems of drilling ships and of a few floating production storage and
offloading (FPSO) ships pass through a moonpool. Being exposed to incident waves
or harmonic ship motions, the fluid inside moonpools may perform considerable
piston-like motions, i.e. vertical oscillations of the mean surface with amplitudes
substantially larger than the vertical ship motions. Similar fluid behaviour may
happen between the hulls of multi-hull vessels or between ships in a side-by-side
arrangement. Treating this problem within the framework of the linearized theory of
water waves (Molin 2001; McIver 2005; Kuznetsov, Maz’ya & Vainberg 2002), the
fluid motions inside the moonpool demonstrate a resonance.

When the steady-state velocity potential is regarded as a function of the complex
frequency, resonances may be related to a pole in the complex-frequency domain that
lies close to the real frequency axis. For some geometries, the complex frequency may
lie on the real axis. In this case, the spectral problem on standing waves satisfying
the condition of zero-radiant waves has an eigenvalue. The eigenfunction which
corresponds to the eigenvalue forms so-called ‘trapping structures’. Resonant forcing
of the trapped mode leads to localization of the averaged total energy near the ship.
A consequence is that the linear resonant amplitude of the trapped mode becomes
theoretically infinite. The possible existence of trapping and complex resonances for
two-dimensional steady-state waves around two symmetric bodies in finite water depth
was investigated by Kuznetsov, McIver & Linton (2001), Kuznetsov et al. (2002) and
McIver (1996, 2005). The resonance due to trapped modes at a floating torus has
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been studied by, for instance, Newman (1999). However, the existence of trapped
modes is a rare exception for actual moonpools including, most probably, our studied
case of two equal-sized free-surface-piercing horizontal rectangular cylinders (see the
computational results of Williams & Abul-Azm (1997) and Drobyshevski (2004), and
references therein). Calculations and experiments by Ohkusu (1970) and Ohkusu &
Takaki (1971), which were devoted to waves excited by forced harmonic vertical
oscillations of two semi-submerged horizontal circular cylinders, also failed to reveal
a trapped mode.

A quasi-analytical approximation of the resonant frequencies and corresponding
modes for a rectangular moonpool in a two-dimensional barge was analysed by
Molin (2001) in a simple and ingenious way. In order to get a symmetric approximate
eigenvalue problem, he assumed that the beam of the barge is much larger than the
width of the moonpool. To mimic the effect of the outer free surface, Molin (2001)
located two sinks symmetrically on the horizontal axis (at keel level), at distances
±b∗/2 from the barge centre (b∗ is somewhat larger than the beam of the barge;
speculative manipulations with these distances were described by Maisondieu et al.
(2001)), so that, owing to the harmonicity of the inflow–outflow through the sinks,
the integral mass flux at any instant, through the free surface and into the sinks,
is zero. This approach is, however, hardly applicable for the description of resonant
waves. A reason is that the existence of outgoing waves, even if they are small, causes
a phase shift of the fluid motions inside the moonpool relative to the forced motion.
The phase shift changes with the excitation frequency. However, Molin’s eigenvalue
approximation is not able to identify this phase shift.

Focusing on the radiation problem (there are no incident waves) and vertical (heave)
excitations of the rectangular structure, the present paper studies two-dimensional
resonant piston-like motions inside the moonpool for finite water depth. The smallness
of the forcing amplitude is postulated. The resonance conditions at an isolated forcing
frequency are associated with a local peak in the steady-state amplitude of the piston-
like mode. The first goal of the paper consists of obtaining a precise analytical
approximation of the linearized surface-wave problem that can be used as a basis
in analytically oriented asymptotic studies of nonlinear resonant motions, as in the
works by Faltinsen (1974) and Faltinsen et al. (2000), which were devoted to sloshing
motions in two-dimensional rectangular tanks. The second goal of the paper is to
study the effect of vortex shedding. The third goal consists of performing model tests
on the steady-state forced-wave amplitudes for piston-like regimes in order to validate
the theoretical results.

Our method is based on the domain-decomposition scheme, which leads to a
system of integral equations on the transmission interfaces (see the papers Mavrakos
2004; Drobyshevski 2004; Kuznetsov et al. 2002, and references therein). After a
mathematical statement of the problem in § 2, we introduce the Neumann traces along
the transmission interfaces and use an integral representation for the corresponding
inhomogeneous boundary-value problems (the kernels of the integral representations
may be treated as Green functions of a special type; see Courant & Hilbert 1953,
chapter 5, § 14). The Dirichlet (pressure) transmission conditions are employed to
derive a system of linear integral equations (§ 3.1.4) governing the Neumann traces.
The integral equations are in part similar to the results of Porter & Evans (1995)
and Kuznetsov et al. (2001). In § § 3.2.1 and 3.2.2, the integral system is solved by the
Galerkin method of adopting a special basis which captures the actual singularities
at the corner points of rectangular hulls. A similar technique for other surface-
wave problems was presented by Porter & Evans (1995) and Gavrilyuk et al. (2006).
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Further, this basis system facilitates the derivation of analytical expressions for the
elements of the matrix problem which appears in the Galerkin method. As a result,
the approximate solution guarantees fast convergence and provides from six to eight
significant figures with only six to nine basis functions on each transmission interface.
An accurate prediction of the singularities at the corners is needed to capture the
vortex-shedding effect. This is done by combining our projective method with the
discrete-vortex method of Graham (1980) and Downie, Bearman & Graham (1988).
The original radiation problem is not solvable for a given forcing frequency only
when there exists a trapped-mode solution ( see, for instance, Kuznetsov et al. 2002;
McIver, McIver & Zhang 2003; McIver 2005); if this is not the case then both integral
and approximate (matrix) problems have a unique solution. In § 3.3 we show that, in
an approximate sense, the resonance behaviour for any given dimensionless forcing
frequency may be related to the zeroes in the determinant of a submatrix.

In § 4 we describe the model tests and compare the linear predictions of resonant
steady-state motions with experimental data. An emphasis is placed on the theoretical
and experimental values of the resonant frequency as well as on a quantitative
comparative analysis of both the piston-like elevations and also the wave amplitudes
in the far field (§ § 4.2.1–4.2.2). In the experimental sense, resonances are related
to the non-dimensional frequencies at which a local maximum for the piston-like
amplitude occurs. Also in § 4.2.2, and in § 4.2.3, we study the added-mass and damping
coefficients as functions of the forcing frequency for all the experimental cases. Finally,
asymptotic solutions as the forcing frequency vanishes, as well as the corresponding
finite limit for the damping coefficient, are derived. The comparative analysis shows
that the theoretical resonant frequencies (§ 4.2.1) are in reasonable agreement with
experiment for smaller forcing amplitudes. However, the discrepancy increases for
larger excitations and for wider mooonpools. Section 4.2.2 gives a systematic
comparative analysis and discusses the discrepancy. Two types of nonlinearity, namely,
free-surface nonlinearity and vortex shedding at the corners, should be accounted for
to remove the discrepancy. An intuitive reason for the presence of the free-surface
nonlinearity is the observed narrowing of the resonance zone and jump-like behaviour
occurring at isolated frequencies on the experimental response curves. Nonlinear
analyses by Vinje (1991) for the limiting case of a moonpool of narrow opening,
by Miles (2004) for a one-dimensional model of piston-like motions in a well by
Hirata & Craik (2003) for the simplest possible equivalent mechanical model indicate
that the free-surface nonlinearity may matter. In the case of a wider moonpool, the
discrepancy may also be related to a complex interaction between the piston-like
mode and a sloshing mode. The latter refers to the secondary resonance in the system
(see the discussion of complications due to secondary resonance in sloshing problems
by Faltinsen & Timokha (2001)).

Because vortex shedding is one possible reason for a decrease in the maximum
piston-like wave amplitude with increasing forcing amplitude, a local discrete vortex
method as described by Graham (1980) and Downie et al. (1988) is applied. In § 5,
we derive an explicit formula for the vortex-induced vertical force on the side hulls
in terms of the coefficients of the singular functions used in the Galerkin basis. An
important assumption of the local-discrete-vortex method is that the shed vorticity
remains in a small vicinity of the hull corners. Our analysis assumes steady-state
conditions, with the consequence that vorticity of equal magnitude but different signs
is generated in two subsequent semicycles. The experimental and numerical study by
Maisondieu et al. (2001) and some of the results of Molin et al. (2002) are relevant
for our studies in § 5. However, there are important differences. Maisondieu et al.
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Figure 1. (a) General geometric sketch and (b) notation for the dimensionless problem.

(2001) considered free oscillations, with, in general, a significantly larger initial water
elevation than our maximum piston-like amplitude, in steady-state regimes. They
showed that in the initial phase until the motion is small there is a clear damping effect
on the moonpool flow that cannot be described by wave radiation. Our numerical
results based on the local vortex method demonstrate that this additional vortex-
induced force gives only a very small contribution to the damping coefficient (the
amplitude of the outgoing waves) for our experimental cases. A reason is that it is
a second-order effect and all the excitation amplitudes are relatively small. It is also
possible that a large vortex was generated in the test of Maisondieu et al. (2001). The
vortex may have remained for a long time and not have been totally counteracted by
vorticity shed later; this can occur for steady-state regimes.

2. Statement of the problem
We study two-dimensional Oz̄-symmetric steady-state surface waves caused by

small-amplitude vertical regular oscillatory motions of two rigidly connected rect-
angular hulls in a finite water depth, as shown in figure 1(a). The analysis suggests
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a non-dimensional formulation, in which all the geometric dimensions are scaled
by the horizontal width of the moonpool, L1 (the distance between the hulls). The
characteristic time is equal to 1/σ , where σ is the forcing angular frequency. This
implies a redefinition of the dimensional variables (which have overbars) in non-
dimensional form as follows:

x = x̄/L1, z = z̄/L1, t = σ t̄, Λ =
σ 2L1

g
, ψ(x, z, t) =

1

L2
1σ

ψ̄(x̄, z̄, t̄), (2.1)

where ψ is the non-dimensional velocity potential and g is the acceleration due to
gravity. As a particular consequence, the distance between the rectangular body and
the Oz-axis (the symmetry axis) becomes equal to 1/2, the scaled dimensions of
the stationary immersed rectangular body are d = d̄/L1 in the vertical direction and
B = B̄/L1 = b̄/L1 − 1/2 in the horizontal direction. The non-dimensional water depth
is h = h̄/L1 and the non-dimensional forcing amplitude is ε = η3a/L1 � 1, where
the dimensional vertical motion of the moonpool is defined by η3(t) = −η3a cos σ t .
Because the piston-like steady-state sloshing inside the moonpool is described by
Oz-symmetric solutions, the non-dimensional velocity potential is found in the
left-hand semi-band (x � 0), as shown in figure 1(b).

As a rule, we use overbars to distinguish a dimensional variable from a non-
dimensional variable. In particular, we denote by Āi and ¯̃Ai the intersections of the
water plane with the hulls (i =1, 4) and the immersed edges, as shown in figure 1(a).
The symbols for the same points in the non-dimensional case will not have overbars.

Assuming that ∇ψ ∼ ε � 1 and neglecting the o(ε) terms, the following linearized
problem for steady-state linear waves in the left-hand semi-band is formulated:

�ψ = 0 in Q0,
∂ψ

∂ν
= 0 on SB + S + SS, (2.2a)

∂ψ

∂ν
= ε sin t on SD, (2.2b)

Λ
∂2ψ

∂t2
+

∂ψ

∂z
= 0 on Σ0, (2.2c)

ψ(x, z, t + 2π) ≡ ψ(x, z, t). (2.2d)

Here Q0 is the mean fluid volume, Σ0 is the unperturbed free surface (z =0), S refers
to the mean wetted vertical walls of the stationary rectangle, SB is the horizontal
seabed, SD is the bottom of the rectangular body, SS is the artificial vertical wall
caused by the Oz-symmetry and ν is the outer normal to the fluid boundary. The
boundary condition (2.2c) results from combining the non-dimensional linearized
kinematic and dynamic conditions

∂ψ

∂z
=

∂f

∂t
, Λ

∂ψ

∂t
+ f = 0 on Σ0, (2.3)

where z = f (x, t) defines the free surface.
The two-dimensional free-boundary problem (2.2) requires a condition for x → −∞,

which implies outgoing waves to the left, far from the body. In the case of steady-state
2π-periodic solutions, the most general representation of this condition is

ψ ∼ F (Kx + t, z) as x → −∞, (2.4)

where K is the wavenumber of the outgoing wave.
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3. Solution method
3.1. Reduction to integral equations

3.1.1. Domain decomposition, definitions

In what follows, the linear problem (2.2) with (2.4) will be studied by using a
domain-decomposition method. This suggests dividing Q0 into four subdomains I,
II, III and IV by auxiliary interfaces T1, T2 and T3, as shown in figure 1(b), and
setting appropriate transmission conditions on them. The division differs from an
analogous procedure by Mavrakos (2004), who combined subdomains III and IV
into one subdomain. Our reason for choosing separate subdomains III and IV is a
requirement of nonlinear modal modelling (Faltinsen et al. 2000), which needs exact
analytical fulfilment of the zero-Neumann condition on the hull walls for the linear
solutions.

The method gives the motions inside the (II + III + IV)-domain as

ψII+III+IV(x, z, t) = ψ |(x,z)∈(II+III+IV) = ϕ(1)(x, z) cos t + ϕ(2)(x, z) sin t. (3.1)

This makes it possible to define the Neumann traces of ϕ(i), i = 1, 2, on Tj , j = 1, 2, 3,
as follows:

on T1,
∂ϕ(i)

∂x
(−b, z) = w

(i)
1 (z), −h < z < −d, (3.2a)

on T2,
∂ϕ(i)

∂x

(
− 1

2
, z
)

= w
(i)
2 (z), −h < z < −d, (3.2b)

on T3,
∂ϕ(i)

∂z
(x, −d) = w

(i)
3 (x), − 1

2
< x < 0. (3.2c)

Here, the six functions w
(i)
j , i = 1, 2, j = 1, 2, 3, belong to admissible functional spaces

which provide the correctness of the corresponding boundary value problems.
This reduces the original wave problem to a system of integral equations for the
w

(i)
j , i =1, 2, j = 1, 2, 3.

3.1.2. Solution in subdomain I

In contrast with (3.1), to satisfy (2.4) the function ψI (x, z, t) =ψ |(x,z)∈I should
include an outgoing-wave component. By separating spatial variables in the semi-
infinite band and matching with solution (3.1) and the Neumann traces (3.2a), one
obtains the following solution in I as a function of w

(1)
1 and w

(2)
1 :

ψI (x, z, t) =

∫ −d

−h

(
w

(1)
1 (z0) cos t + w

(2)
1 (z0) sin t

)
GI (x, z; z0) dz0

+
cosh(K(z + h))

KN0

[
sin(K(x + b) + t)

∫ −d

−h

w
(1)
1 (z0) cosh(K(z0 + h)) dz0

−cos(K(x + b) + t)

∫ −d

−h

w
(2)
1 (z0) cosh(K(z0 + h)) dz0

]
(3.3)

where

GI (x, z; z0) =

∞∑
j=1

cos
(
κ

(1)
j (z0 + h)

)
cos
(
κ

(1)
j (z + h)

)
κ

(1)
j N

(1)
j

exp
(
κ

(1)
j (x + b)

)
. (3.4)

In (3.3), K is the root of the transcendental equation

K tanh Kh = Λ, and N0 = 1
2
h(1 + (sinh 2Kh)/(2Kh)). (3.5)
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The {κ (1)
i } are the positive roots of

κ
(1)
i tan κ

(1)
i h = −Λ, and N

(1)
i = 1

2
h
(
1 +

(
sin 2κ

(1)
i h
)/(

2κ
(1)
i h
))

, i � 1. (3.6)

An analogous representation of the solution can be found, for instance, in Kuznetsov
et al. (2001). Under certain mathematical circumstances, the integral formula (3.3) can
be interpreted as a Green-function representation for the boundary-value problem in
subdomain I (see Courant & Hilbert 1953, chapter 5, § 14) which expresses the solution
in terms of the inhomogeneous Neumann traces at T1. Analysing the structure of
(3.4) shows that the first integral in (3.3) implies the vanishing of the evanescent-wave
component as x → −∞, while the expression in the square brackets represents an
outgoing wave.

3.1.3. Solutions in subdomains II, III and IV

The pairs (w(i)
1 , w

(i)
2 ), i = 1, 2, yeild part of the Neumann boundary-value problems

for the Laplace equation in subdomain II. These problems have solutions (generally,
to within unknown constants A(i)

−1) if and only if the following solvability conditions
(see the appropriate theorems in Aubin 1972) are satisfied:

−
∫ −d

−h

w
(i)
1 (z0) dz0 +

∫ −d

−h

w
(i)
2 (z0) dz0 + εδ2i

∫ −1/2

−b

1 dx0︸ ︷︷ ︸
(b−1/2)

= 0, i = 1, 2 (3.7)

(δij is the Kronecker delta). In a physical sense, (3.7) states instantaneous inflow–
outflow balance through subdomain I. If (3.7) is true,

ϕ
(i)
II (x, z) = A(i)

−1 + εδ2i

(z + h)2 − (x + b)2

2(h − d)

+

∫ −d

−h

[
w

(i)
1 (z0) G(1)

II (x, z; z0) + w
(i)
2 (z0) G(2)

II (x, z; z0)
]
dz0, i = 1, 2, (3.8)

where

G(1)
II (x, z; z0) =

x

h − d

−
∞∑

j=1

cos
(
κ

(2)
j (z0 + h)

)
cos
(
κ

(2)
j (z + h)

)
κ

(2)
j N

(2)
j

cosh
(
κ

(2)
j

(
x + 1

2

))
cosh

(
κ

(2)
j

(
b − 1

2

)) , (3.9a)

G(2)
II (x, z; z0) =

∞∑
j=1

cos
(
κ

(2)
j (z0 + h)

)
cos
(
κ

(2)
j (z + h)

)
κ

(2)
j N

(2)
j

cosh
(
κ

(2)
j (x + b)

)
cosh

(
κ

(2)
j

(
b − 1

2

)) (3.9b)

with

κ
(2)
j =

πj

h − d
, N

(2)
j = 1

2
(h − d) tanh

(
κ

(2)
j

(
b − 1

2

))
, j � 1. (3.10)

Even though the solutions (3.8) are formally determined to within A(i)
−1, the actual

values of these constants must be computed via the Dirichlet-transmission conditions
on T1, T2 and T3.

Analogously, (w(i)
2 , w

(i)
3 ), i =1, 2, yield part of the Neumann boundary-value

problem in subdomain III, which needs the solvability condition∫ −d

−h

w
(i)
2 (z0) dz0 −

∫ 0

−1/2

w
(i)
3 (x0) dx0 = 0, i = 1, 2. (3.11)
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Its solution is

ϕ
(i)
III(x, z) = A(i)

−2 +

∫ −d

−h

w
(i)
2 (z0)G(1)

III(x, z; z0) dz0

+

∫ 0

−1/2

w
(i)
3 (x0)G(2)

III(x, z; x0) dx0, i = 1, 2, (3.12)

where the A(i)
−2 are also computed from the Dirichlet transmission conditions and

G(1)
III(x, z; z0) = −x2 − (z + h)2

h − d

−
∞∑

j=1

cos
(
κ

(2)
j (z0 + h)

)
cos
(
κ

(2)
j (z + h)

)
κ

(2)
j N

(3)
j

cosh
(
κ

(2)
j x
)

cosh
(

1
2
κ

(2)
j

) , (3.13a)

G(2)
III(x, z; x0) =

∞∑
j=1

cos
(
κ

(3)
j x0

)
cos
(
κ

(3)
j x
)

κ
(3)
j N

(4)
j

·
cosh

(
κ

(3)
j (z + d)

)
cosh

(
κ

(3)
j (h − d)

) (3.13b)

with

κ
(3)
j = 2πj, N

(3)
j = 1

2
(h − d) tanh

(
1
2
κ

(2)
j

)
, N

(4)
j = 1

4
tanh

(
κ

(3)
j (h − d)

)
, j � 1.

(3.14)

Finally, the mixed boundary-value problems in subdomain IV involving the
Neumann boundary condition (3.2c) have a unique solution if and only if the
analogous homogeneous problems have only trivial solutions. This occurs when

Λ 	= κ
(3)
j tanh

(
κ

(3)
j d
)
, j � 1. (3.15)

In contrast with (3.7) and (3.11), the solvability condition (3.15) has no physical inter-
pretation but is easily yielded by our method. However, (3.15) has physical meaning
when subdomain IV represents a closed tank and we consider the forced motion of
this tank. Equation (3.15) states then that a solution is not possible at the natural
sloshing frequencies. However, as will be discussed below, the singularity due to (3.15)
is removable for the entire problem.

The mixed boundary-value problems in subdomain IV have the following solution:

ϕ
(i)
IV(x, z) =

∫ 0

−1/2

w
(i)
3 (x0)GIV(x, z; x0) dx0, i = 1, 2, (3.16)

where

GIV(x, y; x0) = 2

(
z +

1

Λ

)

+

∞∑
j=1

cos
(
κ

(3)
j x0

)
cos
(
κ

(3)
j x
)

κ
(3)
j N

(5)
j

κ
(3)
j cosh

(
κ

(3)
j z
)

+ Λ sinh
(
κ

(3)
j z
)

κ
(3)
j cosh

(
κ

(3)
j d
) (3.17)

and

N
(5)
j =

1

4

[
Λ

κ
(3)
j

− tanh
(
κ

(3)
j d
)]

. (3.18)

The kernel (3.17) becomes unbounded as Λ tends to the critical values defined by
(3.15) because this limit causes N

(5)
j → 0 for a certain j .
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In the same way as for (3.3), the integral formulae (3.8), (3.12) and (3.16) may be
interpreted as a Green-function representation for the corresponding free-boundary
problems in subdomains II–IV, i.e. an ‘inversion’ of these problems defined in an
operator form. The series-based integral kernels G(k)

i , i = I, . . . , IV , are common in the
literature on the domain-decomposition method (see Drobyshevski 2004; Kuznetsov
et al. 2001; Mavrakos 2004; Porter & Evans 1995; Williams & Abul-Azm 1997). An
alternative is to express solutions in the subdomains by means of Green’s identity,
with a velocity potential and a log-type Green function for each subdomain. The
latter technique is typical of boundary-element methods in marine hydrodynamics.
However, the log-type representation is rarely used in the domain-decomposition
method because, in its general form, the representation couples both the Neumann
and the Dirichlet traces on the transmission lines. As a consequence, (3.3), (3.8), (3.12)
and (3.16) may contain additional quantities relating to projections of the velocity
potential on Ti and other boundaries. This makes it difficult to derive the governing
integral equations on the transmission lines, as discussed later in the text. Special
efforts should be made to avoid Dirichlet traces. For instance, their use implies that
the log-type Green function in subdomains II and III must satisfy the zero-Neumann
condition on their boundaries. We did not try to find the corresponding expressions.
The main reason was that our special singular functional basis in the Galerkin scheme,
to be discussed below, admits exact integrals in all the computations, while we do not
know of analogous exact integrals over the corresponding expressions for log-type
kernels.

3.1.4. Dirichlet transmission and the resulting integral equations

The problem is reduced to a set of integral equations with respect to w
(i)
j , j = 1, 2, 3,

i = 1, 2, by using the Dirichlet transmission conditions on Tj , which imply that

ψI (−b, z, t) = ϕ
(1)
II (−b, z) cos t + ϕ

(2)
II (−b, z) sin t, −h < z < −d, t � 0 (3.19)

as well as

ϕ
(i)
II

(
− 1

2
, z
)

= ϕ
(i)
III

(
− 1

2
, z
)
, −h < z − d,

ϕ
(i)
III(x, −d) = ϕ

(i)
IV(x, −d), − 1

2
< x < 0, i = 1, 2.

(3.20)

Together with the solvability conditions (3.7) and (3.11), (3.19) and (3.20) yield the
following system of integral equations:∫ −d

−h

w
(1)
1 (z0)K1,1(z, z0) dz0 +

∫ −d

−h

w
(1)
2 (z0)K1,2(z, z0) dz0 − A(1)

−1

− cosh(K(z + h))

KN0

∫ −d

−h

w
(2)
1 (z0) cosh(K(z0 + d)) dz0 = 0,∫ −d

−h

w
(2)
1 (z0)K1,1(z, z0) dz0 +

∫ −d

−h

w
(2)
2 (z0)K1,2(z, z0) dz0 − A(2)

−1

+
cosh(K(z + h))

KN0

∫ −d

−h

w
(1)
1 (z0) cosh(K(z0 + h)) dz0 = ε

(z + h)2

2(h − d)
,

−h < z < −d,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.21a)

∫ −d

−h

w
(i)
1 (z0)K2,1(z, z0) dz0 +

∫ −d

−h

w
(i)
2 (z0)K2,2(z, z0) dz0 +

∫ 0

−1/2

w
(i)
3 (x0)K2,3(z, x0) dx0

+ A(i)
−1 − A(i)

−2 = −εδ2i

(z + h)2 −
(
b − 1

2

)2
2(h − d)

, −d < z < −h, (3.21b)
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−h

w
(i)
2 (z0)K3,2(x, z0) dz0 +

∫ 0

−1/2

w
(i)
3 (x0)K3,3(x, x0) dx0 + A(i)

−2 = 0, − 1
2

< x < 0,

(3.21c)∫ −d

−h

w
(i)
1 (z0) dz0 −

∫ −d

−h

w
(i)
2 (z0) dz0 = εδ2i

(
b − 1

2

)
, (3.21d)∫ −d

−h

w
(i)
2 (z0) dz0 −

∫ 0

−1/2

w
(i)
3 (x0) dx0 = 0, (3.21e)

for i = 1, 2. The kernels are defined as follows:

K1,1(z, z0) = GI (−b, z; z0) − G(1)
II (−b, z; z0)

=
b

h − d
+

∞∑
j=1

cos
(
κ

(1)
j (z0 + h)

)
cos
(
κ

(1)
j (z + h)

)
κ

(1)
j N

(1)
j

+

∞∑
j=1

cos
(
κ

(2)
j (z0 + h)

)
cos
(
κ

(2)
j (z + h)

)
κ

(2)
j N

(2)
j

, (3.22a)

K1,2(z, z0) = −G(2)
II (−b, z; z0) = −

∞∑
j=1

cos
(
κ

(2)
j (z0 + h)

)
cos
(
κ

(2)
j (z + h)

)
κ

(2)
j N

(2)
j cosh

(
κ

(2)
j

(
b − 1

2

)) , (3.22b)

K2,1(z, z0) = G(1)
II

(
− 1

2
, z; z0

)
= − 1

2(h − d)
−

∞∑
j=1

cos
(
κ

(2)
j (z0 + h)

)
cos
(
κ

(2)
j (z + h)

)
κ

(2)
j N

(2)
j cosh

(
κ

(2)
j

(
b − 1

2

)) , (3.22c)

K2,2(z, z0) = G(2)
II

(
− 1

2
, z; z0

)
− G(1)

III

(
− 1

2
, z; z0

)
= − (z + h)2

h − d
+

1

4(h − d)
+

∞∑
j=1

cos
(
κ

(2)
j (z0 + h)

)
cos
(
κ

(2)
j (z + h)

)
κ

(2)
j

×
(

1

N
(2)
j

+
1

N
(3)
j

)
, (3.22d)

K2,3(z, x0) = −G(2)
III

(
− 1

2
, z; x0

)
= −

∞∑
j=1

(−1)j
cos
(
κ

(3)
j x0

)
κ

(3)
j N

(4)
j

cosh
(
κ

(3)
j (z + h)

)
cosh

(
κ

(3)
j (h − d)

) , (3.22e)

K3,2(x, z0) = G(1)
III(x, −d; z0)

= h − d − x2

h − d
−

∞∑
j=1

(−1)j
cos
(
κ

(2)
j (z0 + h)

)
κ

(2)
j N

(3)
j

cosh
(
κ

(2)
j x
)

cosh
(

1
2
κ

(2)
j

) , (3.22f)

K3,3(x, x0) = G(2)
III(x, −d; x0) − GIV (x, −d; x0)

= 2

(
d − 1

Λ

)
+

∞∑
j=1

cos
(
κ

(3)
j x0

)
cos
(
κ

(3)
j x
)

κ
(3)
j N

(6)
j

, (3.22g)

where

1

N
(6)
j

= 4

(
coth

(
κ

(3)
j (h − d)

)
−

κ
(3)
j − Λ tanh

(
κ

(3)
j d
)

Λ − κ
(3)
j tanh

(
κ

(3)
j d
)
)

.
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One should note that, if Λ tends to its critical value defined by (3.15) at a fixed j ,
the kernel K3,3 becomes formally singular (infinite) owing to division by zero in a
single summand of the sum. However, the singularity is removable for the complete
integral problem: multiplying (3.21c) by Λ − κ

(3)
j tanh(κ (3)

j d) and performing simple
algebraic operations make the integral equation (3.21c) well-posed. This means that
the formal solvability condition (3.15) is unnecessary for the complete system of
integral equations (3.21).

3.2. Galerkin method

3.2.1. Projective scheme

The inhomogeneous system of ten integral equations (3.21) couples six unknown
functions w

(i)
k , k =1, 2, 3, i =1, 2, and four coefficients A(i)

−1, A(i)
−2, i = 1, 2. It can be

solved by the Galerkin projective scheme, suggesting approximate solutions in the
form

w
(i)
1 (z) =

N1∑
j=1

α
(1,i)
j v

(1)
j (z), w

(i)
2 (z) =

N2∑
j=1

α
(2,i)
j v

(1)
j (z), w

(i)
3 (x) =

N3∑
j=1

α
(3,i)
j v

(2)
j (x), (3.23)

where {v(1)
j } and {v(2)

j } are two complete systems of functions on (−h, −d) and (− 1
2
, 0),

respectively. Insertion of (3.23) into (3.21) and use of the projective scheme leads to
a system of 2N1 + 2N2 + 2N3 + 4 linear equations with respect to 2N1 + 2N3 +
2N3 + 4 variables, {α(1,i)

j , j = 1, . . . , N1}, {α(2,i)
j , j =1, . . . , N2}, {α(3,i)

j , j =1, . . . , N3}
and A(i)

−j , i, j = 1, 2.
By introducing the vector

B =
(
α

(1,1)
1 · · · α(1,1)

N1
α

(2,1)
1 · · · α(2,1)

N2
α

(3,1)
1 · · · α(3,1)

N3
A(1)

−2 A(1)
−1

α
(1,2)
1 · · · α(1,2)

N1
α

(2,2)
1 · · · α(2,2)

N2
α

(3,2)
1 · · · α(3,2)

N3
A(2)

−2 A(2)
−1

)T
, (3.24)

the matrix problem following from the Galerkin scheme is as follows:

PB = εb, (3.25)

where P is a (2N1 + 2N3 + 2N3 + 4) × (2N1 + 2N3 + 2N3 + 4) matrix.
The elements of P and the right-hand-side vector b are integrals over the kernels

(3.22) and the functions {v(1)
j } and {v(2)

j }. The matrix P has the following structure:

P =

⎛
⎜⎜⎝

D
−p

0

p
0

D

⎞
⎟⎟⎠ , (3.26)

where the two sub-matrices D and p have dimensions (N1 +N2 +N3 +2) × (N1 +N2 +
N3 + 2) and N1 × N1, respectively.

3.2.2. Local velocity field at the corner points Ā2 and Ā3 and a functional basis

The convergence and accuracy of the Galerkin method depend on how the
functional sets {v(1)

j (z)} and {v(2)
j (x)} are chosen. Because the Neumann traces on

Tk, k = 1, 2, 3, are singular at the corner points of the piercing rectangular body, i.e.
w

(i)
j (z) → ∞ as z → −d and w

(i)
3 (x) → ∞ as x → − 1

2
, the use of a smooth functional

basis, for instance, a trigonometrical or polynomial basis, causes weak convergence.
In contrast, accounting for the singular character of the traces should improve the
convergence (Porter & Evans 1995; Kuznetsov et al. 2001; Gavrilyuk et al. 2006). The
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local solutions of the complex velocity at the edges Ā2 and Ā3 can be expressed in
the complex plane Z = x̄ + iz̄ as

dW0

dZ

∣∣∣∣
atĀ2

= e−iπ/2 η3aσ sin σ t +

∞∑
i=1

T
(2)
i (t)(Z + B̄ + id̄)2i/3−1, (3.27a)

dW0

dZ

∣∣∣∣
atĀ3

= e−iπ/2 η3aσ sin σ t +

∞∑
i=1

T
(3)
i (t)

[
eiπ

(
Z +

L1

2
+ id̄

)]2i/3−1

, (3.27b)

where W0 is the complex velocity potential. The first terms in (3.27 a, b) are caused
by the vertical motion of the body. Conclusions on the asymptotic behaviour of the
velocity potential ψ at the corner points may also be found in the book by Grisvard
(1985).

By conducting direct analytical derivations, or by noting that summands in (3.27)
for which i is divisible by 3 are regular, one can see that terms associated with
T

(2)
3l (t), T

(3)
3l (t), l = 1, 2, . . . vanish on the intervals T̄k, k = 1, 2, 3. This implies that

ψ(−b, z, t) ∼ (z + d)m as z → −d and that ψ(x, −d, t) ∼ (x + 1
2
)m as x → − 1

2
, where

the numbers m belong to the set{
± 1

3
+ 2(i − 1), i � 1

}
. (3.28)

The enumeration of (3.28) in ascending order determines a sequence mj, j � 1. The
functional basis must satisfy

v
(1)
j ∼ (z + d)mj , z → −d; v

(2)
j ∼

(
x + 1

2

)mj
, x → − 1

2
j � 1. (3.29)

Further, accounting for the zero-Neumann conditions on SB and SS , i.e.(
v

(1)
j

)′
(−h) = 0 and

(
v

(2)
j

)′
(0) = 0, j � 1, (3.30)

we may deduce from (3.29) the following functional sets:

v
(1)
j (z) =

1

r
(1)
j

(
1 −

(
z + h

h − d

)2
)mj

, v
(2)
j (x) =

1

r
(2)
j

(1 − (2x)2)mj , j � 1, (3.31)

where

r
(1)
j =

√
(h − d)

√
π�(2mj + 1)

2�
(
2mj + 3

2

) , r
(2)
j =

1

2

√√
π�(2mj + 1)

�
(
2mj + 3

2

) , j � 1. (3.32)

Here �(·) is the gamma function. The scaling factors r
(i)
j , i =1, 2, j = 1, 2, 3, appear

from the normalization condition
∫ −d

−h
(v(1)

j (z))2 dz =
∫ 0

−1/2
(v(2)

j (x))2 dx = 1, j � 1.

The non-singular subsets {v(1)
j } and {v(2)

j } with j � 2 constitute complete bases

for the functions on the intervals [−h, −d] and [− 1
2
, 0], respectively, for functions

which satisfy (3.30). The completeness follows from the classical theorem of Müntz†
(see Müntz 1914; Erdélyi & Johnson 2001). Because v

(1)
1 and v

(2)
1 belong to square

integrable functions, the full sets (3.31) are complete in the mean-square metrics.

† Theorem Let p ∈ (0, ∞). Suppose that (λj )
∞
j=0 is a sequence with 0 � λ0 < λ1 < λ2 < · · ·. The

span {xλ0 , xλ1 , . . .} is dense in Lp[0, 1] if and only if
∑∞

j=1 1/λj = ∞.

In our case, λi = mi and the condition
∑∞

j=1 1/mj = ∞ is fulfilled.
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Moreover, v(1)
1 and v

(2)
1 may be associated with approximations of the singular velocity

component, while the complete functional bases {v(1)
j } and {v(2)

j } j � 2 approximate
its regular component.

Comparing the polynomial terms in (3.27) with asymptotic properties of the base
functions (3.31) shows that T

(2)
i (t) and T

(3)
i (t), i 	= 3l, in (3.27) are uniquely determined

by the corresponding Galerkin coefficients α
(i,j )
k . In particular, we can write the

singular dimensional horizontal-velocity component at Āk , k =2, 3, as

∂ψ̄

∂x̄

∣∣∣∣
x̄=−b̄

≈ L
4/3
1 σ (−d̄ − z̄)−1/3γ

(
α

(1,1)
1 cos σ t + α

(1,2)
1 sin σ t

)
= L

4/3
1 σ (−d̄ − z̄)−1/3γ

√(
α

(1,1)
1

)2
+
(
α

(1,2)
1

)2
sin(σ t + θA2

), (3.33a)

∂ψ̄

∂x̄

∣∣∣∣
x̄=−L1/2

≈ L
4/3
1 σ (−d̄ − z̄)−1/3γ

(
α

(2,1)
1 cos σ t + α

(2,2)
1 sin σ t

)
= L

4/3
1 σ (−d̄ − z̄)−1/3γ

√(
α

(2,1)
1

)2
+
(
α

(2,2)
1

)2
sin(σ t + θA3

) (3.33b)

as z̄ → −d̄ − 0, where

γ =
1

r
(1)
1

(
h − d

2

)1/3

= 0.487 570 209 581 027 · · ·
(

h − d

2

)−1/6

, (3.34)

cos θAk
=

α
(k−1,2)
1√(

α
(k−1,1)
1

)2
+
(
α

(k−1,2)
1

)2 , sin θAk
=

α
(k−1,1)
1√(

α
(k−1,1)
1

)2
+
(
α

(k−1,2)
1

)2 , (3.35)

for k = 2, 3.
Comparison with (3.27) gives

T
(k)
1 (t) = L

4/3
1 σ

2γ√
3

√(
α

(k−1,1)
1

)2
+
(
α

(k−1,2)
1

)2
sin(σ t + θAk

), k = 2, 3. (3.36)

3.3. Trapping and resonance condition

Physically, the non-existence of a solution of the radiation problem (2.2) (and, as a
result, of the system of integral equations (3.21)) for a certain Λ∗ could be associated
with the existence of a trapped mode. Although the rectangular geometry most
probably does not admit such a trapping, the authors were not able to find suitable
theorems. However, there exists a necessary condition sin 2K > 0 from the book by
Kuznetsov et al. (2002) (see the proposition on p. 175), which makes it possible to
estimate the admissible ranges of Λ∗, where Oz-symmetric trapping may be possible.
This condition predicts the range of the lowest resonance frequency causing piston-like
motion to be Λ∗ ∈ (0, (π/2) tanh(π/2)).

Furthermore, the concept of trapped (or nearly trapped) modes is very useful for
evaluating the resonant frequencies Λ∗ ∈ (0, (π/2) tanh(π/2)) at which a maximum
piston-like amplitude is expected. Indeed, the trapping implies a non-trivial solution
of the corresponding homogeneous problem (ε = 0), which has a zero outgoing wave
component. This leads to two necessary conditions to be satisfied simultaneously. The
first condition is ∫ −d

−h

w
(i)
1 (z0) cosh(K(z0 + h)) dz0 = 0, i = 1, 2, (3.37)
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i.e. that the square-bracketed terms in (3.3) vanish (the zero-outgoing-wave condition).
By examining the structure of the integral equation (3.21a), the integral condition
(3.37) is seen to be equivalent to

p
(
α

(1,i)
1 · · · α

(1,i)
N1

)T
= 0, i = 1, 2 (3.38)

(p is the N1 × N1 submatrix in (3.26)) for an approximate trapped-mode solution.
This means that the two asymmetric blocks in P associated with p are responsible for
the outgoing wave component. Further, if (3.38) is fulfilled, owing to the symmetry of
the matrix P, the non-trivial solution must satisfy the second necessary condition,

det ‖D(Λ∗)‖ = 0, Λ∗ ∈
(

0,
π

2
tanh

π

2

)
, (3.39)

where D is the submatrix of dimension N1 + N2 + N3 + 2 found in (3.26).
Considering (3.38) and (3.39) together shows that the second condition makes it

possible to compute the Λ∗ value at which a piston-like trapped mode is possible.
Let us focus on the limit Λ → Λ∗ and assume that (3.38) is not fulfilled at Λ = Λ∗
but that the corresponding outgoing wave terms (3.21a) are small relative to the
norm of the evanescent component. The latter means that the left-hand side of
(3.38) is not zero but small relative to ε as Λ → Λ∗. Under this condition, i.e.
asymptotically in terms of the smallness of (3.38), the condition (3.39) means that
the evanescent component becomes infinite in the scale ε as Λ → Λ∗. Therefore,
throughout this paper, the roots of (3.39) in the limit N1, N2, N3 → ∞ are called
the resonant frequencies. At these frequencies, the maximum wave elevation in the
moonpool of the evanescent component is expected. Because our definition of the
resonant frequency is argued with specific asymptotic assumptions and, generally
speaking, there is no rigorous mathematical proof of the fact that Λ∗ leads to the
maximum amplitude of the evanescent component, a broad spectrum of calculations
was done. Unless the dimensionless quantities B and d tend to 0 for a fixed finite h,
our numerical experiments have established that there is one and only one root of
(3.39) and confirmed that the maximum amplitude of the piston-like mode occurs at
Λ =Λ∗.

Further, after identifying the resonant frequencies Λ∗ and computing an appropriate
non-trivial solution B1 from D(Λ∗)B1 = 0 we verified numerically the non-existence of
a trapped piston-like mode. (Because a trapped mode oscillates freely, without loss of
generality the trapped-mode solution can be chosen for convenience as having zero
phase: B =(B1, 0).) With this aim in mind, we calculated the ratio of the outgoing-
wave amplitude and the piston-wave amplitude associated with B =(B1, 0) from (4.2)
and (4.5) below. By evaluating the ratio as a function of the geometric parameters,
we conducted extensive computations to identify its zeroes (i.e. small values). These
showed that the ratio is finite, positive and much larger than the maximum numerical
error, estimated as 10−6, at least for the geometric shapes related to our model test
cases.

3.4. Convergence and numerical details

The functional basis (3.31) makes it possible to get analytical expressions for the
elements of P and b in terms of the gamma and Bessel functions. Quadrature formulae
are not needed.† Analysis of these expressions identifies the numerical summation of

† These explicit expressions are given in a supplement available with the online version of the
paper.
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truncated series by Bessel functions as the most CPU-expensive operation (a similar
situation appeared in the papers of Porter & Evans (1995), Kuznetsov et al. (2001),
Gavrilyuk et al. (2006), where the functional basis captured the singularities at the
sharp edges of baffles and barriers). These summations are CPU-demanding even in
the case when, as organized in our code, the Bessel-function calculation switches to
an asymptotic formula with increasing summation index j . After fixing the number
of desired significant figures for the above-mentioned sums, the truncation number
becomes a function of the indexes i and k. The weakest convergence is expected
only for the six different series associated with i = k = 1 (because κ

(1)
j ∼ j, j → ∞;

see the online supplementary). These series need, for instance, one million terms to
guarantee eight significant figures in the sum. (All the numerical results were made
to guarantee these eight significant figures after truncations.) Other summations are
not CPU-demanding. For example, even i =1, k = 2 requires only about 10 000 terms
but, when i + k > 3, the numerical summation needs less than 2500–50 terms to get
the same eight significant figures. We should stress that only a limited set of terms
change with Λ. By storing the remaining terms, the study of approximate solutions
as a function of Λ becomes less CPU-demanding. For example, for a single frequency
Λ with N1 =N2 = N3 = 8 and eight significant figures for the sums the calculation
needs less than 2 seconds for our non-optimized FORTRAN code on a Pentium-IV
(2.6 GHz) computer.

The method guarantees six to seven significant figures with q = N1 = N2 = N3 = 7−8
for the tested values of h, B and d . This is consistent with the above-mentioned
summations providing eight significant figures. The same convergence was observed
for various other finite h, b and d values. The convergence is very fast for smaller h−d

values, corresponding to a narrow gap between the seabed and the hulls, and weaker
for fairly deep water. The latter is caused by the obvious fact that the functional basis
(3.31) does not decay exponentially downwards as it does the infinite in deep-water
wave problem.

Convergence of the Galerkin-method results to the solution of the original integral
equations depends on the properties of P in (3.25). The tested configurations (d, B, h)
lead to non-zero (strongly positive) determinants of P. However, this determinant
demonstrated a minimum at Λ = Λ∗, where Λ∗ is the resonant frequency associated
with the root of (3.39). This explains why the convergence may generally differ as Λ

varies, especially as Λ → Λ∗. Typical convergence is demonstrated in the tables of the
online supplement. The method provides from six to seven significant figures for the
amplitude parameters A(i)

j , j = 0, 1, i =1, 2, defined by (4.2) and (4.5) below (scaled
by the forcing amplitude; see the approximate formulae in the online supplement) for
both resonant and non-resonant conditions. The theoretical results were controlled by
the volume- and energy-conservation conditions and asymptotic solutions as Λ → 0
were derived. This is discussed below in § 4.2.3.

The accuracy of the method can be improved by using larger truncated series
in the corresponding approximate formulae and performing a Gram–Schmidt
orthogonalization of the functional basis (3.31). The latter may be necessary for large
Ni, i =1, 2, 3, because of the non-orthogonality of (3.31) in the mean-square metrics.
As a consequence, the determinant of the corresponding large-dimensional Gram
matrix over the functional sets (3.31) tends to zero and, therefore, det |D| and det |P|
become numerically smaller than the chosen precision for certain q � q∗. Improving
the summation and performing the orthogonalization significantly increases the
required CPU time so that, for example, providing nine to ten significant figures
(i.e. an additional two significant digits) increases the CPU time by a factor 1000.
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Figure 2. Picture of the test rig and details of the wave probes w1–w7.

However, to maintain computational efficiency we found it satisfactory to restrict all
the numerical examples below to within q = N1 = N2 = N3 = 8, which guarantees at
least six significant figures for the numerical amplitude parameters.

4. Comparison with experiment
4.1. Model tests

Moonpool model tests were performed in the narrow-wave flume of the Department
of Marine Technology, NTNU. This wave flume is 0.6 m wide, with water depth
1.03 m and total length 13.5 m. The flume is equipped with a single-flap wavemaker
and a parabolic beach. The wavemaker is automatically controlled, and it moves to
damp out incoming waves. A rectangular ship section with a moonpool undergoes
small-amplitude regular oscillatory vertical (heave) motions. The focus is on the
piston-mode resonance that occurs in the moonpool. The centre of the ship section is
positioned 4.2 m away from the wavemaker.

The draught d and moonpool width L1 were varied between tests. The width of
the two rectangular shaped parts of the ship hull, B , was 0.36 m. The hull was made
from plywood, and the corners were sharp. Vertical regular oscillatory motion was
achieved by the use of a servo motor connected to a ball screw and rail system.
Position steering was used for the servo motor. A Labview application generates the
steering voltage signal at the analogue input of the servo-motor control loop. The
set-up is shown in figure 2, where the servo-motor forcing mechanism is visible.

Figure 3 shows the positions of the wave probes, position gauges and accelerometers
when the moonpool width and depth are both equal to 180 mm. A total of 12 wave
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Figure 3. Instrumentation for a moonpool width and depth L1 = 180mm and d = 180mm,
respectively. All measurements are in mm.

probes were used, denoted w1–w12. Three of these, w6, w7 and w8, were made from
parallel copper tape fixed to the ship section, while the rest consisted of two lengths of
parallel wire and were Earth-fixed. The wires had diameter 3 mm, except for w1–w5
and w9, which had wire diameter 1.9 mm. The centre distance was about 10 mm for
the wire probes, while the copper-tape probes had tape width 10 mm; the distance
between the tapes was 10 mm. Wave probes w1–w5 were parts of the same unit.
Both types of wave probe, copper-tape and wires, were capacitance probes. Because
of the surface tension, the wire probes have an accuracy of the order of the wire
radius, i.e. about 1 mm, when the instantaneous free surface, excepting the meniscus,
is perpendicular to the wires. If the free surface is steep or curved, the accuracy may
be lower. The copper-tape probes fixed to the ship-section walls have an accuracy
limited by local effects between the free surface and the wall, exemplified by the thin
films of water that stick to the wall a short while after the free surface has descended.
Its position is measured by use of force rings with strain gauges attached by strings. In
addition, the steering-system-position feed-back is sampled. The accelerometers were
used to check for vibrations and could also be used as an extra means of position and
velocity measurement. When the moonpool width was increased from L1 = 180 mm
to L1 = 360 mm, the wave probes w1–w5 and w9 were kept in the moonpool centre,
while the other sensors were moved outwards from the centre so that the relative
distance to the side hulls was kept the same.
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Figure 4. Free-surface elevation at wave probe w3 for η3a = 5 mm, L1 = 180 mm, d =180 mm
and σ = 4.9637 rad s−1.

A Hottinger-Balwin MGC+ amplifier and data acquisition unit was used. The
internal sampling frequency was 19.2 kHz, and a Butterworth low-pass 1 kHz filter was
applied. Finally, the data was stored at 400 Hz. A typical test duration was 140 seconds,
including the starting and finishing linear ramps on the forcing amplitude, each of
which lasted for 10 seconds. After short transients, the experiments demonstrated, for
a narrow forced-frequency range, clearly symmetric and two-dimensional piston-like
2π/σ -periodic wave elevations in the moonpool. Figure 4 shows a typical recording
of this elevation measured at probe w3. Note that if a trapped mode had existed we
would have expected additional oscillations at the trapped-mode frequency. The start
and end ramps are obvious, and clearly a steady state is reached. The automatically
controlled wavemaker and parabolic beach prevent the reflection of radiated waves
back onto the section. Fourier analysis was used to check that the dominating
harmonics were equal to the forcing angular frequency σ . This provided an extra
control on the experimental resonance frequency.

The typical progress of a test run was as follows. The ramp on the regular oscillatory
heave-motion amplitude ensured a relatively short-lived transient for the response.
Typically, the steady state was reached in less than 60 seconds. For most of the
forcing frequencies, some initial beating occurred in the moonpool. The free-surface
elevation inside the moonpool reached an absolute maximum and minimum in the
middle, but the difference in level across the moonpool was not large. The minimum
amplitude for radiated waves was observed for frequencies slightly higher than the
frequency that results in the maximum free-surface elevation inside the moonpool.
The measured steady-state free-surface elevation seemed quite sinusoidal. Viscous
effects were obvious around the corners of the rectangular ship hulls, where tiny
particles in the water visualized vortex shedding. This vorticity was especially evident
when the free-surface-motion amplitude in the moonpool was large.

In summary, thinking in terms of our non-dimensional linear theoretical statement,
the completed model tests for a wide range of forcing frequencies were performed
with only three different geometric configurations, corresponding to the following
dimensionless parameters.

Case 1: h = 5.722 22, d = 1 and B = 2, with two forcing amplitudes, ε =0.013 889
or 0.027 778;

Case 2: h = 5.722 22, d = 1.5 and B = 2 with the same two forcing amplitudes;
Case 3: h = 2.861 11, d = 0.5 and B = 1 with only one forcing amplitude,

ε = 0.006 94.
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The non-dimensional distance at which the wave amplitudes and phase shifts were
measured was wp =6.388 89 in cases 1 and 2 and wp =3.4444 in case 3.

All the experimental series detected a clear resonance about a certain non-
dimensional frequency Λ∗ for which the water elevations inside the moonpool
reached their absolute maximum. The value of Λ∗ was weakly dependent on the
forcing amplitude. In cases 1 and 2, some isolated experiments were done for
0.013 889 < ε < 0.027 78 with forcing frequencies close to Λ∗. These confirmed
the position of the resonance frequency Λ∗ from (3.39).

4.2. Comparison of theory and experiment

In this subsection, we compare the theoretical predictions and experimental data for
the following quantities:

• the resonance frequency of the piston-like motions Λ∗ associated in experiments
with the maximum piston-like amplitude. Theoretically, this frequency is computed as
the limit of (3.39) as q = N1 =N2 = N3 increases.

• the steady-state amplitudes of the piston-like mode, whose ‘experimental’ values
for each fixed Λ were computed by numerical integration over the five probes w1–
w5 shown in figure 3. In order to get the experimental values, the acquired time
histories for the free-surface elevation at these probes as well as the vertical position
measurement for the ship hulls were filtered at 10 Hz. Then the last 10 seconds of
data before ramp-down were analysed, the local maxima stored and the mean and
standard deviation of the maxima calculated. The standard deviation relative to the
mean value was less than 3%. This implicitly confirmed that the measurement error
was small. The normalized free-surface elevation was found as the ratio of the mean
values of the free-surface elevation and the forcing amplitude. In our non-dimensional
statement, the theoretical piston-like amplitudes are, using (2.3), defined as

Ma = Λ max
t∈[0,2π]

∣∣∣∣2
∫ 0

−1/2

∂ψ

∂t

∣∣∣∣
z=0

dx| = max
t∈[0,2π]

∣∣2∫ 0

−1/2

∂ψ

∂z

∣∣∣∣
z=0

dx

∣∣∣
= max

t∈[0,2π]

∣∣A(1)
1 cos t + A(2)

1 sin t
∣∣, (4.1)

where, accounting for the continuity of the fluid mass in subdomain IV,

A(i)
1 = 2

∫ 0

−1/2

w
(i)
3 dx, i = 1, 2, (4.2)

and, therefore,

Pa =

√(
A(1)

1

)2
+
(
A(2)

1

)2
. (4.3)

Explicit computational formulae for A(i)
1 following from our method are given in

the online supplement. Because the experimental values are scaled by the forcing
amplitude, an adequate comparison must impose Ma := Ma/ε.

• the wave amplitude at the far field. Owing to (3.3), the net amplitude of the
outgoing wave Pa is defined as follows:

Pa = max
t∈[0,2π];x∈(−∞,b)

∣∣− A(2)
0 cos(K(x + b) + t) + A(1)

0 sin(K(x + b) + t)
∣∣

=

√(
A(1)

0

)2
+
(
A(2)

0

)2
, (4.4)
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where

A(i)
0 =

sinh Kh

N0

∫ −d

−h

w
(i)
1 cosh(K(z0 + h)) dz0, i = 1, 2 (4.5)

(approximate computational formulae for the A(i)
0 are presented in the online

supplement). Comparisons involving the far-field wave amplitude require the vertical
wave elevation at probe w11 (xwp

= − wp − b) to be scaled by the forcing amplitude.
The dimensional distance between the hull and w11 was 700 mm. Accounting for the
evanescent component, which may slightly affect the elevations at w11 (theoretically,
by about 1%–4% for our experimental cases), the wave amplitude at xwp

was
computed from a more complicated formula than (4.4). Proceeding with integral
representations gives

Pw = max
t∈[0,2π]

∣∣A(1)
4 cos t + A(2)

4 sin t
∣∣ =

√(
A(1)

4

)2
+
(
A(2)

4

)2
, (4.6)

where

A(1)
4 = A(1)

2 − A(1)
0 sin Kwp − A(2)

0 cos Kwp,

A(2)
4 = A(2)

2 + A(1)
0 cos Kwp − A(2)

0 sin Kwp

}
(4.7)

with

A(i)
2 = Λ

∫ −d

−h

w
(i)
1 GI (−wp − b, 0; z0) dz0. (4.8)

Explicit approximate formulae for A(i)
2 are given in the online supplement.

• in case 3, the steady-state amplitudes at the wave probes inside the moonpool (w1–
w5 at x = xwm

∈ (− 1
2
, 0)) are evaluated. Here, the experimental data were not able

to clearly identity the piston-like steady amplitudes Ma . Theoretically, the steady
non-dimensional amplitude at xwm

is defined as

Mw = max
t∈[0,2π]

∣∣∣∣Λ∂ψIV

∂t
(xwm

, 0, t)

∣∣∣∣ = max
t∈[0,2π]

|ΛψIV (xwm
, 0, t)|

= max
t∈[0,2π]

∣∣A(1)
3 cos t + A(2)

3 sin t
∣∣ =

√(
A(1)

3

)2
+
(
A(2)

3

)2
, (4.9)

where

A(i)
3 (xwm

) =
∂ϕ

(i)
IV

∂z
(xwm

, 0) = Λϕ
(i)
IV (xwm

, 0) =

∫ 0

−1/2

w
(i)
3 GIV (xwm

, 0; x0) dx0; (4.10)

the computational formulae are given in the online supplement. As usual, these should
be divided by ε for comparison with the non-dimensional model test data.

• the theoretical and experimental phase shifts. The experimental values arise from
the time difference between the local maxima of the forcing η3 = −η3a cos σ t and
those found in the recordings. Theoretical values of the phase shifts for the piston-
like motions (θm), the wave elevation at w11 (θp) and the wave elevations at probes
w1–w5 (θw) can easily be evaluated from the corresponding expressions (4.1), (4.6)
and (4.9). Because the time-dependent quantities in (4.1), (4.6) and (4.9) represent
non-dimensional vertical velocities (whose absolute maximum per period coincides
with the elevations in our non-dimensional statements), the expressions within the
modulus verticals should be compared with the input signal for the velocity on SD ,
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Figure 5. Theoretical prediction of the resonance frequency Λ∗ (the root of (3.39)) versus d
(solid line) and the estimate by Molin (2001) (dotted line). Panel (a) relates to cases 1 and 2
(h = 5.722 22 and B = 2), but (b) relates to case 3 (h =2.861 11 and B = 1). The squares and
triangles mark the experimental values of Λ∗ for lower forcing amplitudes (ε = 0.013 889 in
(a) and ε = 0.006 944 in (b)) and for larger forcing amplitudes (ε = 0.027 78), respectively.

i.e. with ε sin t . This implies that

A(1)
1 cos t + A(2)

1 sin t = Ma sin(t − θm), A(1)
2 cos t + A(2)

2 sin t = Pw sin(t − θp),

A(1)
3 cos t + A(2)

3 sin t = Mw sin(t − θw), θm, θp, θw ∈ [0, 2π],

}
(4.11)

where the phase shifts are computed by a standard trigonometric technique.
In addition, we calculated the added-mass and damping coefficients. Because

measurements of vertical force on the hulls were not conducted, the hydrodynamic
coefficients could not be compared. Theoretical values of the added mass and damping
are derived and analysed in § 4.2.3.

4.2.1. Resonance frequency

The calculations confirmed that the maximum theoretical response (the local
maximum of Ma from (4.1) as a function of Λ) coincides with the roots computed
from (3.39). The solid lines in figure 5 show Λ∗ versus d for two cases associated
with our experiments. In addition, the figure includes the predictions by Molin (2001),
which can be written as

Λ∗ =

(
d +

1

π

(
3

2
+ ln

b∗

2

))−1

, (4.12)

where b∗ � b corresponds to the position of an artificial sink or source used in
Molin’s method (in both graphs, we have simply assumed that b∗ = b; see figure 1 b).
Although Molin’s formula (4.12) is based on infinite-water-depth theory, implicitly
assumes non-small B and, generally, gives results depending on b∗, which is a priori
unknown, it reflects qualitatively well the behaviour of Λ∗ versus d .

The theoretical and experimental piston-mode resonance frequencies compare well.
The frequencies are almost equal in case 1 (figure 5a), while there are small differences
in case 2 and 3, which are hardly visible in figure 5(b). The results of Molin (2001)
are also illustrated. The discrepancy between Molin’s results and ours increases when
the draught is small relative to the moonpool width. Molin’s prediction (4.12) gives
larger Λ∗ values, but these can be improved by a speculative manipulation of the
artificial parameter b∗. Some practical recommendations on this point were given by
Maisondieu et al. (2001).
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4.2.2. Amplitudes and phase shifts

Measurements of the wave elevations in the moonpool and in the far field, away
from the structure (henceforth, we focus only on measuring probe w11), make it
possible to validate quantitatively the linear theoretical predictions. As we stated
earlier, both experimental and theoretical values are scaled by the forcing amplitude.
This implies that, owing to the linearity, the scaled theoretical amplitudes may simply
be calculated by using the formal substitution ε = 1 in (3.25), and these values are
the same for different forcing amplitudes. In contrast, the scaled experimental wave
amplitudes may change with the forcing. This is caused by various physical factors,
including free-surface nonlinearity and vortex shedding, which are not accounted
for by our linear-potential theory. The experimental and theoretical phase shifts θm

and θp (see definitions (4.11)) were also evaluated. The experimental accuracy at the
measured probes can be quantified. The relative error in the averaged values of the
piston-like amplitudes is less than 3% for the case of maximum amplitude response.
This was confirmed by two series in the case of figure 6(a) and three series in the case
of figure 6(c) made, with the same forcing parameters, in the vicinity of the amplitude
peak. These series were repeated from two to five times.

The experimental and linear theoretical behaviour of the scaled wave amplitudes
is presented in figures 6(a–d), 7(a–d) and 8(a–b). These figures correspond to
experimental cases 1–3. Note, that in case 3, when the experiments were made with
a wider moonpool, the measuring probes w1–w5 remained at their original positions.
In this case, the estimate of the piston-like amplitude from the recordings has limited
accuracy. In terms of the non-dimensional statement only the vertical elevations at
x = −0.222 22, −0.111 11 and 0 are known, but experimental data on what happened
in x ∈ [−1/2, 0.2222) are absent. Although the piston-like resonant motions yield
almost flat profiles inside the moonpool, the difference in the elevations at different
probes is generally speaking not negligible. Therefore, the comparison in case 3 will
be done for the elevation at probe w3.

The results for cases 1 and 2 possess very similar features (figures 6 and 7).
First of all, they demonstrate clearly a single resonance peak for the piston-like
response so that the maximum theoretical values are of order about ten times the
forcing amplitude. Further, the model tests conducted with lower forcing amplitudes
approach the maximum piston-like amplitude, but the experimental value of the latter
is less that in the linear inviscid theory. The agreement between the measured and
theoretical values for both the piston-like and far-field amplitudes is satisfactory for
smaller forcing amplitudes (figures 6 and 6a). Larger forcing amplitudes increase the
discrepancy – compare figures 6(a) and 6(b) and figures 7(a) and 7(b). This is typical
for nonlinear effects due to both flow separation at the corners and the free surface.
The agreement with the experimental phase shifts in figures 6(b, d) is also not bad for
both forcing amplitudes, especially for θm (note that to avoid jumps in the phase-shift
function θm = θm(Λ) in figures 6(b) and 6(d) we allowed θm to be larger than 2π in a
small range of Λ).

In order to understand the nature of the resonance at Λ∗ we have presented in panels
(e) of figures 6 and 7 graphs of the amplitude components A(j )

i , i = 0, 1, j = 1, 2,
scaled by ε. Owing to (4.3), the resulting piston-like amplitude is the mean square of
the A(j )

1 , j = 1, 2, whose absolute values reach maxima that are very close to each
other and, as expected, Ma is maximal somewhere between these two maxima. The
calculations confirm that this maximum value of Ma occurs at the resonance frequency
Λ∗. One interesting point is that Λ∗ coincides with the zero of the ‘pressure’-based
components of the outgoing wave, namely, A(2)

0 = 0 at Λ∗. We have no reasonable
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Figure 6. Case 1, for which B = 2, d = 1 and h = 5.722 22. Theoretical and experimental
amplitudes of the piston-like motions Ma and the wave elevation at w11 Pw/ε, (scaled by
the forcing amplitude), versus Λ are presented in (a), (c). The corresponding theoretical
and experimental phase shifts θm and θp are given in (b), (d). Panels (a) and (b) give for
comparison the results from theory and experiment for the experimental forcing amplitude
ε = 0.0138 89; however, (c) and (d) imply that ε = 0.027 778. Panel (e) gives the theore-
tical behaviour of the scaled amplitudes A

(j )
i = A(j )

i /ε, i = 0, 1, j = 1, 2. Panel (f) represents
the theoretical prediction for the dimensionless added mass (A33 and the damping coefficients
B33 defined by (4.16)–(4.18). The asymptotic limit B33 → 1.672 16 as Λ → 0 is consistent with
the formula (4.19).

physical explanation of this. In addition, panels (f) in figures 6 and 7 include the
theoretical values of the non-dimensional added mass and the damping coefficient
(4.17). The behaviour of the damping coefficient is linked with conservation of energy
and it is discussed in § 4.2.3.

Cases 1 and 2 exhibit an interesting behaviour in the experimental data slightly
away from the resonance. An example is the measured elevations around the point j1

in figures 6(a) and 6(c). Because this behaviour is typical for both lower and higher
forcing amplitudes, it cannot be explained by uncertainties in the measurements but
looks like a nonlinear phenomenon. An additional reason for this is that, starting
from j1, the experimental response for the piston-like amplitude (as shown by the
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Figure 7. The same as figure 6, but for case 2 (d = 1.5).

arrows) becomes narrower than in the theoretical linear prediction. Furthermore, the
experimental data from case 2 demonstrate a series of new discrepancies with regard
to the theoretical predictions. First, a strange, non-smooth, behaviour, denoted p1,
is now detected from a single measurement away from the primary resonant zone.
Once again, it is present for both the lower and higher forcing amplitudes. Second,
the maximum experimental amplitude (a peak) is now slightly offset relative to the
theoretical Λ∗ by an amount s, so that comparing panels (a) in figures 6 and 7 gives
the impression that either flow separation or a Duffing-like behaviour may occur in
case 2. We will show later in the text that vortex shedding itself cannot be the reason.

Case 3 in figure 8 gives a comparison (dashed line) with the experimental values (the
elevations at the middle probe w3). The solid line represents the theoretical piston-
like amplitude. The difference between the solid and dashed lines is insignificant for
the wave amplitudes (see figure 8a, where the theoretical predictions for Ma and
Mw are very close to each other) and it is generally invisible in the graphs for the
corresponding phase shifts (figure 8b is not able to distinguish them). In summary,
cases 2 and 3 both show a drift s, of the maximum piston-like response, from the
theoretical prediction to the experimental peak (compare panels a in figures 7 and
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Figure 8. The same as figures 6(a–f ) but for case 3, for which B = 1, d = 0.5, h = 2.861 11
and the experimental forcing amplitude ε = 0.006 944. In addition, the dashed line in (a)
corresponds to the scaled wave elevations Mw at w3 (xwm

= 0, in the middle of the moonpool)
and may compared with the experimental results. Analogously, (b) represents by the dotted
line the theoretical phase shift θw from (4.11). B33 → 0.5912 as Λ → 0.

8). However, while figures 6 and 7 indicate that, to some extent, agreement may be
improved by accounting for a kind of damping, case 3, with a wider moonpool,
in figures 8(a, b) is challenging. It demonstrates a behaviour of the maximum
experimental piston-like amplitude in relation to linear theoretical predictions which
cannot be clarified by an appeal to damping.

First of all, new features of the experimental data in case 3 are associated with point
j4 occurring to the left of the primary resonance Λ∗, and point j3, occurring at Λ∗.
These two points near the resonant Λ∗ form a ‘Bactrian camel’ response (two humps)
instead of an ‘Arabian camel’ response (one hump) in the theoretical data. Of special
interest is the left-hand hump of the ‘camel’, which exceeds the theoretical maximum.
Here we have numerous experimental data confirming this. Measured recordings
corresponding to the key point j3 will be discussed in the following text. A numerical
analysis shows that the positions of Λ, pl and pr , where the absolute values of A(1)

1

and A(2)
1 reach their maxima, coincide with the experimental Λ values at which the

experimental data have two local maxima (‘humps’). The net amplitude Ma is the
mean square of the sine or cosine amplitudes A(1)

1 and A(2)
1 in figure 8(c). When

obtaining steeper maxima for |A(1)
1 | and |A(2)

1 | due to nonlinearity or a damping,
generally speaking one obtains a camel-like curve for Ma .

An illustration showing explicity that the resonance phenomenon in case 3 are
characterized by the influence of nonlinearity and, as a consequence, by amplification
of the higher harmonics, follows from the Fourier analysis in figure 9. The emphasis
is on the point j3. Here, panels (a) and (b) give recordings at w1 and w5 for case 1
(Λ = 0.5357 or σ/2π = 0.86Hz) and periodic elevations in case 3 (Λ = 0.8041 or
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Figure 9. Dimensional steady-state elevations at w1 (solid line), w5 (dashed line) and their
Fourier filtering in the range 0.5–1.3Hz (dot-and-dashed line) and 1.3–10 Hz (dotted line). (a)
Case 1 with Λ= 0.5357 (0.86Hz) and (b) corresponds to j3 in figure 8 (a) with Λ= 0.8041
(0.745Hz).

σ/2π =0.745 Hz, the point j3), respectively. The contributions of the filtered lower
and higher harmonics at w5 are also presented. Figure 9(b) demonstrates clearly
periodic but non-sinusoidal signals, which are contributed by higher harmonics than
in figure 9(a). The dominating higher harmonics is four times larger than the forcing
frequency. A logical explanation of these higher harmonics may be an internal
(secondary) resonance between the piston-like mode at Λ∗ = 0.8041 and a sloshing
mode characterized by non-dimensional resonant frequencies Λi, i � 1. The piston-
like mode may create only a parametric-type resonance for the sloshing modes
and the resonant sloshing frequencies are quite a lot larger than the lowest piston-
like Λ∗. This means that the secondary resonance, in terms of a nonlinear theory
which produces lσ, l = 1, 2, . . . harmonics, is predictable when lσ/σi, l � 1, i � 1
is an integer. Thinking in terms of the lowest l and i and using estimates of the
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resonant sloshing frequencies by Molin (2001), we find that lσ/σi ≈
√

l/2i for Λ∗
in case 3. Possible ‘resonance’ combinations are l =2, i = 1, l = 4, i =1, l = 4, i =2
etc. Special studies are needed to select an actual secondary resonance from these
combinations.

4.2.3. Energy-conservation rule and asymptotic behaviour as Λ → 0

According to Newman (1977) and Faltinsen (1990), the time derivative of the total
dimensional energy of the entire moonpool can be written for our Oz-symmetric
flows as

dE

dt̄
= 2

∫
S̄B

(p̄ − p̄0)

(
−∂ψ̄

∂z̄

)
dx̄ − 2ρ

∫
S̄−∞

∂ψ̄

∂t̄

∂ψ̄

∂ν̄
dz̄

where ψ̄ , the spatial coordinates and the time are dimensional, ρ is the fluid density,
p is the hydrodynamic pressure, p0 is the atmospheric pressure, the normal vector
ν̄ is directed into the fluid volume and the auxiliary vertical line S̄−∞ is located far
away from the moonpool.

Thinking in terms of the value of dE/dt̄ averaged over the period T = 2π/σ , we
can derive the following expression:〈

dE

dt̄

〉
=

1

T

∫
0

dE

dt̄
dt̄ = 2ρL4

1σ
3ε2(Ii − Io) = 0, (4.13)

where the non-dimensional finite quantities Ii and Io in the parentheses are
responsible for the time-averaged energy income (due to forcing) and damping (due
to outgoing wave), respectively. These are defined via the following expressions:

Ii = − 1

2ε

∫ −1/2

−b

ϕ
(1)
II (x, −d) dx, Io =

N0

2ε2K sinh2 Kh

((
A(1)

0

)2
+
(
A(2)

0

)2)
, (4.14)

where the amplitudes A(i)
0 are defined by (4.5) and the computational formula for Ii

is given in the online supplement. Note that ϕ
(1)
II ∼ ε and A(i)

0 ∼ ε and, therefore, the
presence of the small quantity ε in (4.14) is necessary to keep Ii and Io finite.

The energy-conservation rule for steady-state waves requires Ii = Io. This equality
has been strictly controlled in all our computations. When q = N1 = N2 = N3 = 8, it
has always been satisfied to within a relative error 10−7. This is consistent with the
mean precision of the method.

Another important point relates to the asymptotic behaviour of the amplitude
parameters as Λ → 0. Direct computation showed that both the piston-like amplitudes
Ma and the amplitudes of the outgoing waves Pa tend to zero in this limit.
This fact does not follow directly from the boundary problem (2.2) with Λ =0
because, clearly, the rigid-free-surface condition is correct in the near field but not at
infinity.

By fixing the geometric parameters h, d and B as finite, accounting for the fact
that K =

√
Λ/h + o(

√
Λ), N0 =h + O(Λ) and assuming that Λ∗ is far from zero,

we may deduce that the mean-square norms of w
(i)
j are finite. This justifies the

applicability of asymptotic analysis to the system of integral equations (3.21), which
in this case applies to finite kernels defined on finite domains. By implementing
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standard asymptotic expansions in (3.21), one gets the following solution:

A(1)
−1 = A(1)

−2 = −
ε
(
b − 1

2

)
√

hΛ
+ εO(1), A(2)

−1 = A(2)
−2 = εO(1),

A(1)
1 = 2

∫ 0

−1/2

w
(1)
3 (x0) dx0 = 2

∫ −d

−h

w
(1)
2 (z0) dz0 =

ε
(
b − 1

2

)
√

h

√
Λ + εo(

√
Λ),

A(2)
1 = 2

∫ 0

−1/2

w
(2)
3 (x0) dx0 = 2

∫ −d

−h

w
(2)
2 (z0) dz0 = εo(

√
Λ),

A(1)
0 =

ε
(
b − 1

2

)
2h

Λ + εo(Λ), A(2)
0 = ε

(
b − 1

2

)√
Λ

h
+ εo(Λ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.15)

which, as we can see, governs only the fluxes over the transmission lines. Higher-order
approximations will describe the w

(i)
j as functions of spatial coordinates.

Solution (4.15) confirms that both the outgoing wave amplitude Pa and the piston-
like Ma amplitude, defined by (4.4) and (4.1), respectively, tend to zero as

√
Λ → 0. An

arbitrary constant which must be added to the solution in this limit due to vanishing
Λ (it is represented by A(i)

−j , i, j = 1, 2, in the corresponding subdomains) comes from
the far-field solution and tends to infinity as Λ → 0.

Finally, we considered the added mass Ā33 and damping coefficient B̄33 for the
catamaran, i.e. both the hulls were included. Accounting for the Oz-symmetry derives
their dimensional values as

Ā33 = 2ρL2
1

∫ −1/2

−b

1

ε
ϕ

(2)
II (x, −d) dx and B̄33 = −2ρL2

1σ

∫ −1/2

−b

1

ε
ϕ

(1)
II (x, −d) dx,

(4.16)
where the ϕ

(i)
II , i = 1, 2, are non-dimensional and defined by (3.8).

By normalizing Ā33 and B̄33 as

A33 =
Ā33

2ρL2
1

, B33 =
B̄33

2ρL2
1

√
g/L1

, (4.17)

we obtain finite non-dimensional values, which are presented in figures 6(f), 7(f)
and 8(d) as a function of Λ. The computational formula for A33 is presented in
the online supplement, but, owing to the energy-conservation rule and (4.14), the
non-dimensional damping coefficient is equal to

B33 = 2
√

Λ Io. (4.18)

Physically, this means that the damping in our case is associated with the non-
dimensional energy flux of the outgoing wave.

It is well-known (Bai & Yeung 1974) that the two-dimensional added mass Ā33 in
heave motion at finite depth approaches a constant as σ → 0. Our results confirm this.
The corresponding behaviour of B33 has been analysed by Kan (1977) and McIver &
Linton (1991). By using the asymptotic solution (4.15), one obtains

lim
Λ→0

B33 =
B2

√
h

, (4.19)

which is consistent with Kan (1977). It was used by us as a control and always gave
the right predictions, shown in figures 6(f), 7(f) and 8(d).

One interesting point is that the limit does not depend on the draught d . This
follows from (4.19) and is confirmed by numerical experiments. In addition, because
the solutions of the problem are weakly affected by h for certain h > h∗, we can take
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h → ∞. This means that B33 vanishes as it should do for the infinite-water-depth
case. One should note that the dimensional expression for the limit of the damping
coefficient is

lim
σ→0

B̄33 = 2ρB2

√
g

h
(4.20)

(here, all the values are dimensional), so that it is independent of L1. This makes it
possible to take L1 → 0 and get the result for the damping coefficient of a single
rectangular free-surface-piercing body performing a harmonic heave motion.

Actually, we can show that the limit (4.20) with 2B as the waterplane length is
true for any two-dimensional mono- and multihull body that is symmetric about
the centre-plane. This follows by using matched asymptotic expansions, in which
the rigid-free-surface condition applies in the near field. The outer expansion of the
near-field solution represents a uniform flow following from the continuity of the
fluid mass. The flow at infinity in the far-field solution follows from matching with
the near-field solution and by applying a wavemaker solution similar to (3.3), with
the wavemaker at the centre-plane. To obtain the desired result, the resulting wave
amplitude at infinity should be combined with the energy-conservation condition.

5. Effect of vortex shedding
5.1. Discrete-vortex method and results of Graham (1980)

The discrete-vortex method assumes the vorticity to be concentrated in thin boundary
layers and free-shear layers. Diffusion of the vorticity in the free-shear layers is
neglected. This is appropriate at high Reynolds numbers. The method is best suited
when the separation points are clearly defined at sharp edges. Details of the boundary-
layer flow are then unnecessary. However, the vorticity is generated in the boundary
layer and fed into the free shear layer. This is mathematically accounted for by using
a generalized Kutta–Joukowski condition at the separation points. The free-shear
layers are approximated by discrete vortices that are convected with the fluid. The
forces on the body can be obtained by integrating the pressure either expressed
via the unsteady Bernoulli equation or directly by means of the Blasius equation.
Comprehensive reviews of the literature may be found in Graham (1980) and Downie
et al. (1988) as well as in the books by Lewis (1991) and Sarpkaya & Isaacson (1981).

When the ambient oscillatory flow is harmonic with circular frequency σ and the
Keulegan–Carpenter number Kc = 2πÛ/(σL) is small (here Û is the ambient flow-
velocity amplitude and L is a characteristic body length), further simplifications may
be made in modelling the viscous-flow effect. If Kc is small, the shed vorticity is
concentrated near the sharp corners. Each of the local edge flows becomes analogous
to the flow past an infinite wedge. The non-separated global flow provides inflow
conditions to the local edge flows. However, there is no direct interaction between
the vortices at the different local edge flows. The total vortex-induced force on the
body is a straightforward sum of the local vortex-induced forces due to the local edge
flows.

The discrete vortex analysis of shedding from an isolated edge was carried out by
Graham (1977, 1980) by using a conformal mapping technique. He assumed a stable
and regular oscillatory process with small Kc as observed in the experiments for sharp-
edged bluff cylinders by Singh (1979). An oscillatory ambient flow past an infinite
wedge of internal angle α < π, with complex velocity amplitude Û = eiβ0Û , where β0

defines the ambient flow direction past the body, was considered. Our objective was to
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apply Graham’s results. The needed length scales and inflow conditions in Graham’s
formulae for the vortex-induced force must be properly described.

First, Graham gave the formula for the complex force in terms of the strengths
Υi(t) and positions ζi(t) of N vortices in the auxiliary complex plane ζ that is a
conformal transformation of the original complex flow plane Z:

Fv = −iρ
d

dt

[
N∑

n=1

Υn(t)(ζn(t) − ζ̄n(t))

]
= eiα0 Fv. (5.1)

Here α0 determines the direction of the force and the ζ̄n are complex conjugates (in
the case of the outer part of a circle, the ζ̄n must be replaced by the image points
inside the circle).

The auxiliary flow plane ζ consists of either a half-plane or the outer part of a
circle. As a consequence the singular local ambient flow at the sharp edge becomes
regular, and the ambient flow velocity is governed in ζ by

U(t) = eiβ0 U (t) = Û sin(σ t + θ) = eiβ0 Û sin(σ t + θ) (5.2)

(β0 = 0 when the transformed fluid plane coincides with the lower half-plane). Later,
Graham showed that the vortex-induced force acts perpendicularly to the bisector
of the wedge, and he presented a generalized Morison formula for the bisectoral
vortex-induced force Fv:

Fv = 1
2
ρÛ 2LK (3−2λ)/(2λ−1)

c Ψ (t), (5.3)

where ρ is the fluid density and λ= 2 − α/π. The dimensionless function Ψ is
approximated as

Ψ (t) = ā sin(σ t + θ)|sin(σ t + θ)| + b̄ cos(σ t + θ), (5.4)

where the values ā and b̄ depend on α, e.g. ā = 1.57 and b̄ = − 0.16 for our studied
case, α = π/2.

The formula (5.3) needs a characteristic length scale L. For an infinite wedge, L

defines the dimensional relationship between the real and transformed planes. It is
the distance, from the edge to a point Zp in the original flow plane, that is equal to
the distance from the origin of the corresponding point ζp in the transformed plane,
i.e. |Zp| = |ζp| =L. Further, the use of (5.3) suggests matching the flow at the edge
of an infinite wedge to the inner region of an oscillatory ambient flow (amplitude
Û and frequency σ ) past a finite body with the same edge angle. The ambient-flow
velocity is singular in the original plane and, therefore, the matching is carried out in
the transformed plane in order to avoid the singularity. This relates the length scale
L to Û and σ . The complex potential for the attached (non-separated) flow round a
wedge (mapped to a half-plane) is

W0(ζ, t) = U (t)ζ, (5.5)

where the real part of U (t) is the original velocity scale in (5.2). As shown by
Downie et al. (1988), the matching can be done by means of a Schwartz–Christoffel
transformation. The latter computes the needed length scale L at the edge as the
main asymptotic term

Z = eiα1L1−λζ λ (5.6)

of the transformation in the vicinity of the corner point. Here α1 depends on the
angular position of the wedge. The details will be discussed extensively in the next
section.
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Figure 10. (a) The original complex flow plane Z formed in the lower subplane by the Ox-axis
and two ship hulls and (b) the transformed flow domain appearing as the lower half-plane
formed by the Oζ1-axis. The Schwartz–Christoffel transformation of these domains is defined
by (5.7), where a1 = a2 + a3 − a4.

5.2. Local velocity field in the transformed plane

5.2.1. Conformal transformation

A Schwartz–Christoffel transformation is used to map the fluid flow in the original
fluid domain Z to an auxiliary lower half-plane ζ , as shown in in figure 10:

Z =

∫ ζ

0

H(ξ, a1, a2, a3, a4) dξ, H =

((
ξ 2 − a2

2

)(
ξ 2 − a2

3

)(
ξ 2 − a2

1

)(
ξ 2 − a2

4

))1/2

, (5.7)

where a1 = a2 +a3 −a4 with 0 < a4 < a3 < a2. Further, the ai are uniquely determined
by the moonpool width and the side-hull beam and draft on solving the system∫ a4

0

H dξ =
L1

2
,

∫ a3

a4

H dξ = −id̄,

∫ a2

a3

H dξ = B̄, (5.8)

where a1 = a2 + a3 − a4.
Concentrating on the corner points Ā2 and Ā3 in the Schwartz–Christoffel

transformation (5.7) and using the l’Hôpital rule gives

Z − Ā2 = L
−1/2
A2

(ζ + a2)
3/2, ζ → −a2,

Z − Ā3 = eiπ/2L
−1/2
A3

(ζ + a3)
3/2, ζ → −a3,

}
(5.9)

where Ā2 = − L1 − B̄ − id̄ , Ā2 = − L1 − id̄ and, as a result,

LA2
=

9
(
a2

2 − a2
4

)(
a2

1 − a2
2

)
8a2

(
a2

2 − a2
3

) , LA3
=

9
(
a2

1 − a2
3

)(
a2

3 − a2
4

)
8a3

(
a2

2 − a2
3

) (5.10)

define the needed length scales at Ā2 and Ā3, respectively. In the limit L1 → ∞,
this result is consistent with that of Downie et al. (1988), who analysed the vortex
shedding due to a single rolling hull.

5.2.2. Local flows without vortices

The complex potential W0 for the original velocity field without vortices in the
plane Z is determined by (3.27). The local representation transforms to the plane ζ



390 O. M. Faltinsen, O. F. Rognebakke and A. N. Timokha

by using

dW0

dζ
=

dW0

dZ

dZ

dζ
.

Accounting for (3.27) and (5.9) gives, in a small neighbourhood of Ā2 and Ā3,

dW0

dζ

∣∣∣∣
atĀ2

=
[
T

(2)
1 (t) 3

2
L

−1/3
A2

]
+
[
e−iπ/2 3

2
L

−1/2
A2

η3aσ sin σ t
]
(ζ + a2)

1/2 + O(|ζ + a2|),

(5.11a)
dW0

dζ

∣∣∣∣
atA3

=
[
T

(3)
1 (t) 3

2
L

−1/3
A3

]
+
[

3
2
L

−1/2
A3

η3aσ sin σ t
]
(ζ + a3)

1/2 + O(|ζ + a3|), (5.11b)

i.e. the dominating terms in the transformed plane are as follows:

W0(ζ, t) ≈ U (3)(t) ζ, ζ → −a3, W0(ζ, t) ≈ U (2)(t) ζ, ζ → −a2, (5.12)

where

U (k)(t) = 3
2
L

−1/3
Ak

T
(2)
1 (t) = 3

2
L

−1/3
Ak

L
4/3
1 σ 2√

3
γ

√(
α

(k−1,1)
1

)2
+
(
α

(k−1,2)
1

)2︸ ︷︷ ︸
Û (k)

sin(σ t + θAk
).

(5.13)

An important point is that both the coefficients α
(i,j )
1 and the phase lags θA2

, θA3

are obtained in § 3.2.2 from our global inviscid solution without vortices. This means
that using (5.13) implies that all the boundary conditions (including those on the
free surface) are satisfied. As a consequence, since the ambient flows at Ā2 and Ā3

computed via (5.13) are not equivalent and, in general, Û (3) 	≡ Û (2) and LA2
	= LA3

, the
Keulegan–Carpenter numbers are different for the local flows at each edge, i.e. they
are given by

K (k)
c =

Û (k)2π

σLAk

, k = 2, 3. (5.14)

5.2.3. The local flows due to vortex shedding

The complex velocity potential W for the local flow at an edge consists of the
sum of W0 and discrete vortices shed from either Ā2 or Ā3. There are N2 and N3

vortices localized in the neighbourhoods of −a2 and −a3, respectively. Furthermore,
ζ (2)
n (t), Υ (2)

n (t), n= 1, . . . , N2 and ζ (3)
n (t), Υ (3)

n (t), n= 1, . . . , N3 are given functions
whose appearance and time evolution are related to direct simulations by the
generalized Kutta–Joukowski condition, as elaborated by Graham (1980). Accounting
for the dominating term (5.12), the complex velocity potential in the vicinity of a
corner can be presented as

W |atĀk
= U (k)(t)ζ +

Nk∑
n=1

iΥ (k)
n

2π

[
log
(
ζ − ζ (k)

n

)
− log

(
ζ − ζ̄ (k)

n

)]
, k = 2, 3. (5.15)

5.3. Vortex-induced vertical force

Owing to the Oz-symmetry of the velocity field, the complex force on the bottoms of
the two hulls follows from doubling the force acting on the bottom of a single hull.
The linear, dominating, term of the complex force is

F = 2i

∫
S̄D

P dZ, P = −ρ
∂W

∂t
, (5.16)
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where S̄D is the bottom area of a side-hull. The vortex-induced complex-pressure
contribution is

Pv = P(2)
v + P(3)

v , P(k)
v = − ρi

2π

d

dt

Nk∑
n=1

Υ (k)
n (t) log

(
ζ − ζ (k)

n (t)

ζ − ζ̄
(k)
n (t)

)
, k = 2, 3. (5.17)

Pv is real on the interval ζ ∈ (−a2, −a3) and pure imaginary for ζ ∈ (−a1, a2) ∪
(−a3, a4).

Using (5.17) gives the complex vortex-induced force on the two linked hulls. Its
vertical component (pure-imaginary part) is the sum of the vortex-induced forces at
the two edges, i.e.

Fv = 2
(
FA2

v + FA3
v

)
, FAk

v = i

∫ Ā3

Ā2

P(k)
v dZ = eiπ/2 F Ak

v , k = 2, 3.

Using (5.17) gives

F Ak

v = −ρi
d

dt

Nk∑
n=1

Υ (k)
n (t)JAk

(
ζ (k)
n (t), ζ̄ (k)

n (t)
)
, k = 2, 3, (5.18)

where

JAk

(
ζ (k)
n (t), ζ̄ (k)

n (t)
)

=
1

2π

∫ a3

a2

log

(
ζ − ζ (k)

n (t)

ζ − ζ̄
(k)
n (t)

) ((
ζ 2 − a2

3

)(
ζ 2 − a2

2

)(
ζ 2 − a2

4

)(
ζ 2 − a2

1

))1/2

dζ. (5.19)

The latter integrals may be asymptotically simplified by using the fact that only
discrete vortices are localized at the corresponding edges. This implies the smallness
of |ζ (k)

n − ζ̄ (k)
n | and |ζ (k)

n − ak| (see Downie et al. 1988). Extracting the dominating
asymptotic terms leads to

JA3
= fA3

(
ζ (3)
n − ζ̄ (3)

n

)
+ O

(∣∣ζ (3)
n − ζ̄ (3)

n

∣∣) O
(∣∣ζ (3)

n + a3

∣∣)+ o
(∣∣ζ (3)

n − ζ̄ (3)
n

∣∣),
JA2

= −fA2

(
ζ (2)
n − ζ̄ (2)

n

)
+ O

(∣∣ζ (2)
n − ζ̄ (2)

n

∣∣) O
(∣∣ζ (2)

n + a2

∣∣)+ o
(∣∣ζ (2)

n − ζ̄ (2)
n

∣∣),
}
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where
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As a consequence, the dominating terms for the vortex-induced forces are

F A2
v = ρi

d

dt

[
N2∑
n=1

Υ (2)
n

(
ζ (2)
n − ζ̄ (2)

n

)]
fA2

, F A3
v = −ρi

d

dt

[
N3∑
n=1

Υ (3)
n

(
ζ (3)
n − ζ̄ (3)

n

)]
fA3

.

(5.22)

Following Downie et al. (1988) and using, to within the factors fAk
, the similarity

of the formulae (5.22) to (5.1) leads to

F A3
v = 1

2
ρ
(
Û (3)

)2
LA3

fA3
Ψ3(t), F A2

v = − 1
2
ρ
(
Û (2)

)2
LA2

fA2
Ψ2(t), (5.23)
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where

Ψk(t) = ā sin(σ t + θAk
)| sin(σ t + θAk

)| + b̄ cos(σ t + θAk
), k = 2, 3.

Using the expressions (3.35) for the phase lags θAk
, k = 2, 3, in Ψk(t) the resulting

vertical force on the side hulls reads

Fv = 2
(
F A2

v + F A3
v

)
= 3ρσ 2L

8/3
1 γ 2

×
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1/3
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A2

fA2
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α

(1,1)
1

)2
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(
α

(1,2)
1

)2)
Ψ2(t)

]
. (5.24)

The result depends on the frequency parameter Λ and the geometric parameters h, B

and d .
The implementation of the formula (5.24) derived via the local vortex model was

directly validated by considering the limiting case of a facing square in infinite fluid.
This was achieved by letting the non-dimensional frequency be high, so that the
free-surface condition approaches zero velocity potential on the mean free surface.
Further, the relative distance L1/B̄ between the hulls and the relative water depth
h/d were made sufficiently large to avoid a hull-interaction effect. The ambient flows
at Ā2 and Ā3 become axis-symmetric (relative to the centre of the hull) and, therefore,
|θA2

− θA3
| → π and Ψ3 → −Ψ2 in (5.24). Introducing a double body consisting of

the submerged part of the side-hull and its image about the free surface allows us
then to relate our results to a facing square in infinite fluid. Our predicted drag
coefficient for a single hull approached the value 1.735, which is in good agreement
with the experimental drag coefficient of 1.6 reported by Graham (1977) for a low
Keulegan–Carpenter number.

5.4. Effect of vortex shedding

5.4.1. Vortex-induced work

In order to estimate the vortex-induced effect on sloshing in the moonpool, one can
calculate the time-averaged work of the vortex-induced vertical force Fv per cycle. It
is defined as

〈Av〉 =
σ

2π

∫ 2π/σ

0

Fv(t)η3aσ sin σ t dt, (5.25)

where the force is determined by (5.24). Direct calculations give
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= 2ρL4

1σ
3ε2[εIv], (5.26)

where the non-dimensional ‘weight coefficients’ caused by the geometry of the
moonpool and the depth h are

WAk
=

3γ 2

2

(
LAk

L1

)1/3

fAk
, k = 2, 3.

The expression in the square brackets of (5.26) is non-dimensional and, due to
linear theory, proportional to ε. The averaged non-dimensional work 〈Av〉 due to
vortex shedding is, therefore, of order ε3. This is in contrast with the pure second-
order expression (4.13), which computes the time-averaged total energy within the
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framework of the linear inviscid theory. An important finding is the fact that the
phase lags θAk

of the ambient flows at Āk expressed via α
(i,j )
1 in (5.26) may cause either

a drag or a thrust on the body. Because the weight coefficients WAk
are proportional

to γ 2 defined by (3.34) and because γ → ∞ as h − d → 0, while LAk
and fAk

do not
depend on the fluid depth h, the work increases as h → d (shallow-water conditions).

5.4.2. Energy balance

Modifying the energy balance (4.13) to include the vortex-shedding work gives

Ii + εIv =
B33

2
√

Λ
+ εIv = Io, (5.27)

where Ii , Iv and Io are O(1) unless Λ → 0. This analysis disregards the effect of
shear forces on the body as well as the viscous dissipation of energy in the fluid
domain (Maisondieu et al. 2001; Molin 2004). Our earlier energy balance Ii = Io

can be considered as a zero-order approximation in the limit ε → 0. Using ε as a
small perturbation in (5.27), one can estimate the influence of vortex shedding on the
outgoing wave amplitude. Indeed, utilizing (4.14), we can write down

P ∗
a

ε
=

√
2K sinh2 Kh

N0

(
B33

2
√

Λ
+ εIv

)
, (5.28)

where P ∗
a is the perturbed value of Pa , (4.3).

Further, because the zero-added mass A33 also occurs in a small vicinity of the
resonant frequency Λ∗, the drift of this zero may also influence the shift of the
maximum response. The corrected dimensional added mass may be computed as

Ā∗
33 = 2ρL1

⎛
⎜⎜⎝A33 −

2π/σ

∫ 2π/σ

0

Fv cos σ t dt

2ρL3
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1(A33 + εJ)v, (5.29)

where A33 is the non-dimensional added mass defined in § 4.2.3 and
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(5.30)

with Jv =O(1).

5.4.3. Vortex-shedding effect on outgoing wave amplitude and added mass

Our local vortex method cannot predict the direct consequence of vortex shedding
on the moonpool elevation. However, as shown in previous paragraph, we can study
the global conservation of energy and relate this to the far-field wave elevations. For
example, employing the formulae (5.28) and (5.29) makes it possible to evaluate the
effect of vortex shedding on the outgoing wave amplitude and the added mass in a
neighbourhood of the resonant frequency Λ∗ for experimental cases 1–3. Figure 11
shows that this influence is small. This is especially true for a small vicinity of Λ∗,
at which the discrepancies between the experimental data and the linear inviscid
prediction in figures 6(c) and 7(c) are substantial. A consequence is that a jump-
like behaviour of the response amplitudes in figures 6(c), 7(c) and 8(a) for Λ < Λ∗
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(a)

Λ

0

0.5

1.0

1.5

2.0

2.5

0.38 0.42 0.46 0.50 0.54 0.58

(b)

Λ

0

0.4

0.8

1.2

1.6

0.25 0.30 0.35 0.40 0.45

(c)

Λ

0

0.4

0.8

1.2

1.6

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Figure 11. The dimensionless outgoing wave amplitude (scaled by the forcing amplitude)
due to potential theory (solid line) and modified by the vortex shedding computed by
(5.28). Panels (a)–(c) correspond to cases 1–3 with larger forcing amplitudes, respectively.
The theoretical results may be compared with experimental measurements of the far-field
amplitudes (symbols) from figures 6(c), 7(c) and 8(d).

cannot be explained by vortex shedding. Moreover, if vortex shedding should cause a
damping, we cannot explain the fact that the experimental wave elevation in case 3
(figures 11c and 8d) is larger than in our linear theory.

Our procedure for computing the vorticity-perturbed outgoing wave amplitude
fails in the neighbourhood of the points where the damping coefficient B33 vanishes
(see figures 6(f), 7(f) and 8(d)). At these points, the outgoing wave amplitude Pa/ε

computed by inviscid potential theory is small and, therefore, comparable with the
ε-contribution in (5.28). Because vortex shedding causes a thrust on the body, the
expression under the square root of (5.28) can then give a small negative value. In
figures 11(a–c), we simply suppose the corrected elevations at the far field to be equal
to zero.

The principal factor causing the very small influence of flow separation in the
experimental cases is that the model tests were done with a small forcing amplitude,
so that the second-order quantity due to the vortex-induced force gives a relatively
small contribution. The vortex-induced contribution would be larger with increasing
ε as well as with increasing non-dimensional B and decreasing h − d .

6. Concluding remarks
The primary purpose of this paper was to create an analytically oriented method

which accurately predicts linear piston-like sloshing in a moonpool and can be adopted
as a basis for nonlinear analytical studies. These studies suggest the methodology of
Faltinsen et al. (2000) and Faltinsen, Rognebakke & Timokha (2003), developed for
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the sloshing of a contained fluid, in which the semi-analytical linear solution plays
the role of a functional set similar to the natural modes of the classical sloshing
problem. For physical clarity and to avoid the mathematical difficulties that arise
for moonpools of complex shape, the paper has focused on the mathematically
simplest situation, i.e. the two-dimensional moonpool of a catamaran consisting of
two rectangular hulls performing heave motions with a small amplitude. With the
understanding that the principal mathematical and numerical difficulties are caused
by the singular behaviour of the velocity potential at the corner points of the hulls,
we reduced the original problem to a system of integral equations defined on the
transmission lines which intersect the corners. A Galerkin projective scheme uses a
singular basis, which correctly handles the above mentioned singularities and makes
it possible to quantify the vortex-shedding effect by the discrete-vortex method of
Graham (1980). A series of numerical experiments were performed to show that
the semi-analytical method guarantees a high precision in computing the resonant
frequencies (at which the maximum piston-like resonant amplitude is expected) and
the free-surface amplitudes in both the moonpool and the far field. These showed a
maximum 10−7 relative error for all the cases considered and, as a consequence, any
discrepancy between the experiments and the theory cannot be related to insufficient
numerical precision.

New model tests were carefully carried out to ensure high-precision measurements.
The forced harmonic heave motions of a two-dimensional catamaran consisting of
two equal rectangular side-hulls were considered. Comparing the measured responses
for repeated tests with the same forcing parameters evaluated the random uncertainty
error to be less than 3%.

The linear inviscid results were compared with the experimental data. The
comparison between the experimental findings and the linear-theory results focused
first on evaluation of the experimental resonance frequencies (at which the maximum
piston-like amplitude is measured) and their theoretical predictions. These are in
good agreement, so that the discrepancy is practically invisible on the corresponding
graphs. Molin’s formula, which was also used in the comparative analysis, gives larger
values and only qualitative agreement. Furthermore, the comparative analysis deals
with steady-state piston-like wave amplitudes inside the moonpool (taking averaged
amplitudes over the moonpool width) as well as with wave elevations at wave probes
located far from the piercing structure. In general, satisfactory quantitative agreement
with experiment is shown, especially for the experimental series with lower forcing
amplitudes. However, the latter quantitative theoretical results do not reflect some
features of the experimentally established response curves, which, we believe, are
caused by nonlinearities and, in part, damping. This is most evident for the piston-
like amplitude.

In view of the results of Maisondieu et al. (2001) and Molin et al. (2002) for
free oscillations in the moonpool, vortex shedding at the moonpool edges may
cause substantial damping of the moonpool motion and therefore contribute to the
discrepancy. The present paper generalizes the results by Graham (1980) and Downie
et al. (1988) on the discrete vortex method for the studied case of steady-state forced
waves. On the basis of these results, formulae for the vortex-induced vertical force and
averaged work were derived. These are simple expressions in terms of the coefficients
of the singular function from the structured Galerkin basis of the linear solution
without vortex shedding. Computations showed that vortex shedding gives a small
contribution to the damping coefficient and the amplitude of the outgoing waves. This
confirms that vortex shedding itself cannot explain the discrepancy between theory
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and experiment for the experimental cases considered. The reason is the relatively
small forcing amplitudes and the quadratic velocity dependence of the vortex-induced
forces.

Although the second-order effect of flow separation does not give a significant
contribution in the cases studied, the free-surface nonlinearity associated with
potential-flow effects may be important. Our basis for speculating about nonlinearities
is our extensive sloshing studies and the fact that the moonpool elevation is not of
the same order of magnitude as the forcing amplitude. That means differences in the
ordering of terms should be made. The importance of nonlinearities is also confirmed
explicitly by time recordings of the wave elevation, which highlight the contribution of
higher harmonics in the steady-state regimes. Further, the importance of nonlinearity
follows from the nonlinear analysis by Vinje (1991) (for a narrow moonpool) and an
equivalent mechanical model of a moonpool by Miles (2004) and Hirata & Craik
(2003). These detect a Duffing-like behaviour leading in particular to O(ε2/3) shifts
in the maximum response. These shifts are qualitatively consistent with what was
established in our model tests. Detailed theoretical studies of the nonlinear features
of piston-like sloshing are planned in the future.

The practical help by Fredrik Dukan in the experimental part of this work was
appreciated. The authors thank Professor J.M.R. Graham for very useful discussions
of vortex shedding in the case studied.
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